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Figure 1. Due to the visual ambiguity, even state-of-the-art vision foundation models (e.g., ViTPose++ [63] and temporal SAM [25, 37])
cannot clearly distinguish human semantics in close interactive cases. Consequently, human pose estimation methods based these basic
human semantics tend to fail. In comparison, our dual-branch optimization framework that leverages human appearance, proxemics, and
physics is capable of alleviating visual ambiguity to give better results.

Abstract

Due to visual ambiguities and inter-person occlusions, ex-
isting human pose estimation methods cannot recover plau-
sible close interactions from in-the-wild videos. Even state-
of-the-art large foundation models (e.g., SAM) cannot ac-
curately distinguish human semantics in such challenging
scenarios. In this work, we find that human appearance
can provide a straightforward cue to address these obsta-
cles. Based on this observation, we propose a dual-branch
optimization framework to reconstruct accurate interactive
motions with plausible body contacts constrained by human
appearances, social proxemics, and physical laws. Specif-
ically, we first train a diffusion model to learn the human
proxemic behavior and pose prior knowledge. The trained
network and two optimizable tensors are then incorporated
into a dual-branch optimization framework to reconstruct
human motions and appearances. Several constraints based
on 3D Gaussians, 2D keypoints, and mesh penetrations are
also designed to assist the optimization. With the proxemics
prior and diverse constraints, our method is capable of es-
timating accurate interactions from in-the-wild videos cap-

1The work was done while Buzhen Huang is a visiting student at Na-
tional University of Singapore.

tured in complex environments. We further build a dataset
with pseudo ground-truth interaction annotations, which
may promote future research on pose estimation and hu-
man behavior understanding. Experimental results on sev-
eral benchmarks demonstrate that our method outperforms
existing approaches. The code and data will be publicly
available for research purpose.

1. Introduction
Human interaction is an essential part of life and has many
physical, mental and emotional benefits. Enabling ma-
chines to understand human interaction may promote a lot
of downstream applications such as robotics, virtual real-
ity, smart security, etc. As an effective tool for understand-
ing human behaviour, 3D human pose and shape estimation
has achieved profound progress in recent years. However,
the existing methods are still not deployable for analysing
close human interactions due to severe visual ambiguities
and inter-person occlusions.

Specifically, single-person methods [9, 31, 49] only fo-
cus on pose accuracy and image-model alignment, while
multi-person approaches [15, 18, 52, 66] tend to address
penetration [18, 66] and spatial distribution reasonable-
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Figure 2. With predicted UV Gaussian maps, we can map the Gaussians to 3D space with a UV coordinate map and splat them to the image
plane. We can then reason the depth ordinal relationship and image-model alignment with the rendered and original images. Since the
Gaussians should also be consistent across non-occluded frames, the optimization adjusts poses to find an optimal solution in interactive
frames, thereby producing accurate depth ordering and poses.

ness [15, 52]. They all ignore the important body con-
tacts and proxemics in close interactions. Only a few re-
cent works are designed for close human-human interac-
tions [6, 16, 40, 56], which regularize the interactions with
learned reaction priors [6, 16] or physical simulation [56].
However, the regression-based methods [6, 16, 56] rely on
high-quality interaction data captured in indoor scenes, and
thus show poor generalization ability on in-the-wild images.
In contrast, BUDDI [40] fits human models to 2D keypoints
via an optimization framework and can work in diverse en-
vironments. Nonetheless, even state-of-the-art large foun-
dation models (e.g., SAM [25] and ViTPose++ [63]) can-
not clearly identify human semantics in complex interaction
cases due to the visual ambiguity. Consequently, BUDDI
still tend to fail.

In this work, we find that human appearances can pro-
vide straightforward cues to alleviate visual ambiguities and
inter-person occlusions. As shown in Fig. 2, with the mod-
eled human appearances and rendering techniques [23], we
can directly leverage the original RGB image to infer the
depth ordinal relationships and image-model alignment for
occluded cases. Based on this observation, we design a
novel dual-branch optimization framework constrained by
appearance, proxemics and physics to reconstruct close hu-
man interactions. However, this straightforward idea re-
quires simultaneously reconstructing human motions and
appearances, which is a highly non-convex optimization ag-
gravated by depth ambiguity.

To this end, we first propose a diffusion model to learn
proxemic behaviors. In contrast to existing interaction pri-
ors [6, 16, 40], our model receives 2D observations and in-
fers 3D interactions from both temporal and reactive infor-
mation. After the training on interactive data with a mask
strategy, the model can regularize the interaction from a
noisy and partially observed input. Subsequently, the dif-
fusion model with trained parameters is used as the motion
branch in the optimization framework. During the optimiza-
tion, the prior can produce a desired interaction by fine-
tuning the network parameters, and this strategy is more

robust to depth ambiguity and local minima. We then de-
sign an appearance branch with two optimizable tensors to
constrain the reconstructed motions. Specifically, the ten-
sors are decoded to Gaussian UV maps with a U-Net [47]
backbone. The Gaussians are then mapped to 3D body sur-
face with a UV coordinate map. By splatting the Gaussians,
we can simultaneously optimize the motions and appear-
ances. In addition, we also penalize mesh penetration and
keypoints re-projection error to improve physical plausibil-
ity and pose accuracy.

Since our method can work well on different environ-
ments, we further collect 100 human-human interaction
videos from Internet and build pseudo ground-truth inter-
action annotations. Experimental results show that the
proposed dataset can improve the current regression-based
method, and may promote future research on human inter-
action understanding. To summarize, the main contribu-
tions of this paper are as follows:
• We propose a dual-branch optimization framework con-

strained by appearance, proxemics and physics to recon-
struct close human interactions, which can work well on
in-the-wild videos.

• We demonstrate that human appearance can be an effec-
tive cue to alleviate visual ambiguities and inter-person
occlusions in closely interactive scenarios.

• We build an in-the-wild dataset for close human interac-
tions, which may promote future research on human in-
teraction understanding.

2. Related Work
Human interaction reconstruction. Human pose and
shape estimation has made tremendous progress in the past
several years. However, most of works [9, 22, 31, 49] in
this field focus on pose accuracy and image-model align-
ment for a single person, and ignore the important interac-
tions between humans. Some works [4, 30, 46, 51] consider
multiple humans in the same scene, but they just address the
inter-person occlusions and do not reconstruct absolute po-
sitions for human interactions. Although some multi-person



methods can regress an approximate absolute translation
for each human with projection geometry [3, 14, 66, 67],
novel position representations [52, 68], or ordering-aware
loss [15, 18, 24, 60], the coarse estimation is inadequate
for delicate close human interactions. Reconstructing close
human interaction is an open issue for decades due to the
depth ambiguity, mesh penetration, and inter-person occlu-
sion. Only a few recent works explicitly consider this prob-
lem by incorporating collision avoidance [7, 56], contact
constraints [8, 50], or proxemics priors [6, 16, 40]. How-
ever, they all rely on detected 2D human semantics and are
still confronted with visual ambiguities.

Human Gaussian splatting. 3D Gaussian Splatting [23]
uses a set of 3D Gaussians to represent a scene and ren-
ders it by splatting and rasterizing the Gaussians, which
has shown high efficiency and impressive performance on
static objects. Recent works have introduced this tech-
nique to model dynamic 3D humans [39] and articulated ob-
jects [29]. Typically, a predicted human motion with SMPL
representation [36] is used to initialize the Gaussians, and
then the properties of each Gaussian is optimized by a
rendering-and-compare strategy [29, 39, 45]. To model di-
verse cloth topologies, some methods adopt a more complex
mesh template for the initialization [20, 32, 42] or directly
use depth information as input [70]. Since these methods
all rely on multi-view inputs, a few works [12, 13, 26, 61]
further simplify the settings to use a monocular video to
learn the human Gaussians. However, they still require
the video to capture the complete observations of a human
body. To address the occluded and invisible parts, Occ-
Gaussian [64] designs an occlusion feature query to recon-
struct humans from partial observations. Lee et al. [28]
also considered the similar obstacle in multi-person scenar-
ios and used a 2D diffusion model to provide additional in-
formation. Nonetheless, they iteratively processed each hu-
man and still need accurate foreground masks. In contrast to
these existing works, we simultaneously predict Gaussians
for two characters, and use the reconstructed appearances to
constrain the human motions.

Pseudo ground-truth generation. Historically, building
3D human annotations always relies on expensive marker-
based [7, 17, 62] or multi-view [11, 33] systems in con-
trolled environments. Although the captured poses are ac-
curate, the model trained with this data shows poor gen-
eralization ability in in-the-wild scenarios due to its sim-
ple background and appearance. To close the domain gap,
a few methods [1, 22, 43] have leveraged weak supervi-
sion for human reconstruction, but the results are still un-
satisfactory due to the sparse constraint. Recently, pseudo
ground-truth annotations [21, 27, 44] have enabled hu-
man pose and shape estimation to show impressive perfor-
mance [9, 49]. With learned pose prior knowledge, some
annotators [21, 34, 38] directly optimize the predictions by

finetuning the network parameters. Additional constraints
from camera perspective models [31], temporal dependen-
cies [44], and crowd spatial distribution [15] are also in-
corporated to improve the annotation quality. Compared to
common single- or multi-person data, close human-human
interactions are more difficult to obtain. A very recent work,
BUDDI [40], has designed a proxemics prior to generate in-
teraction annotations. However, due to the visual ambiguity
and the lack of temporal information, it is still struggle to
produce high quality data in severely occluded cases.

3. Our Method

Fig. 3 shows an illustration of our framework. Given a
monocular in-the-wild video with close interactions be-
tween two people, we propose a dual-branch optimization
framework to reconstruct accurate body poses, natural prox-
emic relationships, and plausible physical contacts.

3.1. Human interaction representation

Motion representation. We adopt the SMPL model [36]
with a 6D rotation representation [71] to describe the inter-
action, which consists of pose θ ∈ R144, shape β ∈ R10,
and translation τ ∈ R3. For a video with N frames and
2 individuals, the reconstructed motions can be denoted as
x1:N =

{
xa,1:N ,xb,1:N

}
, where xa,1:N =

{
θi, βi, τ i

}N

i=1
.

Appearance representation. 3D Gaussian Splatting [23]
is used to represent human appearance, which is parameter-
ized by a set of 3D Gaussians. Conventionally, each Gaus-
sian contains an offset relative to SMPL vertex µ ∈ R3,
color c ∈ R3, opacity σ ∈ R, rotation q ∈ R3, and scale
s ∈ R3. We can obtain the rendered appearance by splatting
Gaussians to the image plane.

3.2. Proxemic prior

Directly optimizing SMPL parameters [2] for close human
reconstruction encounters severe depth ambiguity and is
highly sensitive to occlusions and local minima. To address
these obstacles, we first train a diffusion model to learn pose
and proxemics prior knowledge to assist the optimization.

Model architecture. We adopt a diffusion model to learn
the prior, which iteratively predicts clean data from a pure
noise conditioned on 2D observations. In addition to image
features, we use 2D keypoints as an additional condition for
the diffusion since the existing interaction datasets [33, 62]
may not contain paired RGB images. When the RGB image
is unavailable, we can still use these data to train the prior by
setting image features to be zero. Specifically, the ground-
truth two-person motions x̂1:N

0 are first diffused towards a
standard Gaussian distribution:

q(xt | x̂0) =
√
α̂tx̂0 +

√
1− α̂tϵ, ϵ ∼ N (0, I) , (1)
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Figure 3. Overview of our framework. We propose a dual-branch optimization framework to reconstruct close human interactions from
a monocular in-the-wild video. By optimizing the proxemics prior, U-Net backbone, and two optimizable tensors, the framework simul-
taneously predicts interactive motions and coarse appearances. With the constraints from 2D observations, physics, and prior knowledge,
the framework can finally output 3D interactions with plausible body poses, natural proxemic relationships and accurate physical contacts.

where αt and α̂t are constant hyper-parameters [41]. The
noisy motions x1:N

t are projected to high-dimensional vec-
tors and then concatenated with image and keypoints fea-
tures. We omit illustration of the full diffusion process in
Fig. 3 for brevity. S transformer blocks are used to pro-
cess the concatenated features. As shown in the top left of
Fig. 3, the features of two individuals can share informa-
tion with a cross-attention module [33] in each transformer
block. Finally, the denoised motions are regressed with a
feed-forward layer from the processed features. In each
timestep, the diffusion model predicts the clean motions and
then diffuses them to x1:N

t−1, which is defined as:

q(xt−1 | xt, c) = N (xt−1;µα(xt, c), γ̃tI), (2)

where µα(xt, c) is the estimated mean by the diffusion
model under the condition of c. γ̃t is a hyper-parameter.
Mask strategy. To ensure that the prior is robust to oc-
clusions, we adopt two mask strategies to learn temporal
dependencies and proxemic behaviors, respectively. 1) We
randomly mask the condition and input poses from a subset
of frames, and then enforce the diffusion model to inpaint
the missing information based on temporal relationships. 2)
We may completely mask the inputs of one individual and
compel the model to generate a reaction from the counter-
part. With these two strategies, the prior can produce com-
plete motions even when one individual is totally invisible.
Training loss. We use the following loss functions to train
the prior:

L = Lreproj + Lsmpl + Ljoint + Lvel + Lint. (3)

The reprojection loss is given by:

Lreproj = ∥Π(J3D + τ)− Ĵ2D∥22, (4)

where Ĵ2D is ground-truth 2D pose. It should be noted that
the reprojection loss is important for regressing the abso-
lute translations. Previous single-person methods [9, 49]
always use a weak-perspective camera and may result in
unreasonable spatial distribution in interaction reconstruc-
tion. We thus follow CLIFF [31] to use a perspective cam-
era Π(·) with a common diagonal Field-of-View 55◦ to
project the 3D joints to 2D image. The remaining terms in-
clude the supervisions from the SMPL parameters: Lsmpl =

∥[β, θ]−[β̂, θ̂]∥22, 3D joint positions: Ljoint = ∥J3D− ˆJ3D∥22,

and velocities: Lvel = ∥J̇3D − ˆ̇J3D∥22 on each individual.
To enforce more plausible interaction, we also penalize the
relative distance between two characters:

Lint = ∥|Ja
3D − Jb

3D| − |Ĵa
3D − Ĵb

3D|∥22. (5)

Once the training is completed, the diffusion model can
predict close interactions from RGB images and 2D key-
points. However, due to the visual ambiguity and occlusion,
the results may not be consistent with image observations.
To mitigate this issue, we use the predicted motions and
trained network parameters as initial values, and further re-
fine the motions with a dual-branch optimization.

3.3. Dual-branch optimization
Due to the visual ambiguity, the current regression mod-
els [25, 63] cannot clearly distinguish human semantics
in closely interactive cases, and thus feed-forward human
reconstruction tends to fail. We therefore design a dual-
branch optimization to leverage human appearance, prox-
emics, and physics to address these problems.
Motion branch. We utilize the trained diffusion model
from the previous section to construct the motion branch.



Initially, motions x1:N
0 are regressed from image and key-

points features. As these motions may exhibit image-model
misalignment and lack reliability, we then diffuse them to
x1:N
1 . Unlike traditional reverse diffusion processes that ad-

just motions under additional guidance [16, 49], we finetune
the network parameters πm using several loss functions to
update x′1:N

0 . This approach enhances the controllability
of reconstructed motions and ensures their consistency with
observations. Moreover, the pretrained network parameters
can provide pose and proxemic prior knowledge to alleviate
the depth ambiguity and occlusion.

Appearance branch. Previous optimization-based meth-
ods iteratively fit the model to 2D measurements like
2D keypoints [2, 43], silhouette [58], or part segmenta-
tion [27]. However, even state-of-the-art large foundation
models [25, 63] struggle to produce accurate human seman-
tics for close human interactions due to visual ambiguity.
We find that RGB images can provide reliable dense cor-
respondences and can serve as a constraint with a recon-
structed human appearance. Consequently, we design the
appearance branch to predict 3D Gaussians for appearance
modeling as shown in the bottom left of Fig. 3. The Gaus-
sian properties are encoded in a UV map [19] since it is dif-
ficult to directly optimize tens of thousands of independent
Gaussians. We use a U-Net backbone to regress the map
from an optimizable tensor which works as a latent code for
the human appearance. The Gaussian UV map has 14 chan-
nels containing offset µ, color c, opacity σ, rotation q, scale
s, and identity d. The convolution layers build the depen-
dencies for Gaussians on the UV map, and each Gaussian
can be mapped to 3D space with the UV coordinate map. By
optimizing the input tensors and U-Net, we can reconstruct
the human appearances. With the poses from the motion
branch, we can also render the appearances to 2D images
via Gaussian splatting.

Objective function. We formulate several objective func-
tions to constrain the output of the dual-branch framework.
We first penalize the appearance loss:

Lapp = Lrgb + Lssim + Llpips, (6)

where Lrgb, Lssim, and Llpips are the L1, SSIM [59], and
LPIPS [69] loss between rendered and original images. We
also calculate the re-projection loss Eq. (4) with 2D key-
points to prevent large pose deviations. Since we can ac-
cess the region of the Gaussians rendered on the image with
identity d, we only use the keypoints that fall within the
rendered region of each individual, which differs from the
common formulation and helps alleviate the impact of some
incorrect detections. To prevent inter-person penetrations in
close human reconstruction, we adopt a differentialable 3D

distance fields [55] to reflect the mesh collision:

Lpen =
∑

(fa,fb)∈C

 ∑
va∈fa

∥−Ψfb (va)na∥22 +

∑
vb∈fb

∥−Ψfa (vb)nb∥22


(7)

where fa, fb are two colliding triangles in the detected col-
liding triangles C. v and n are vertex position and normal,
respectively, and Ψ(·) is the distance field. We also use a
smoothness term to enforce smooth motions:

Lsmooth =

N−1∑
i=1

∥J i+1
3D − J i

3D∥22. (8)

We further regularize the predicted motion and appearance
parameters by:

Lreg = ∥θ− θ′∥22+∥τ − τ ′∥22+∥β−β′∥22+Loffset +Lscale,
(9)

where θ′, β′, and τ ′ are the initial predictions from the diffu-
sion model. Loffset = ∥µ∥22 and Lscale = ∥s∥22 calculate the
L2-norm of the predicted offsets and scales, respectively.
Joint optimization for motion and appearance. Given
an in-the-wild video with two-person close interactions, we
first track each human with AutoTrackAnything [37] to pro-
duce bounding-boxes and masks. VitPose [63] is also used
to detect 2D keypoints for each human. To be noted that
other methods require precise segmentation or keypoints of
each individual for reconstruction. In contrast, our frame-
work simultaneously splats two interactive humans and re-
quires only the segmentation of all individuals as a whole to
mask the background, which avoids the individual semantic
parsing in close interactions. Subsequently, we predict the
initial motions with the trained proxemics prior. After the
initialization, the overall optimization objective is defined
as:

argmin
πm,πa

L = Lapp + Lreproj + Lpen + Lsmooth + Lreg. (10)

The optimization variables are πm and πa, where πa repre-
sents the parameters of the optimizable tensors and U-Net in
the appearance branch. We adopt the Adam optimizer with
learning rates of 0.00002 and 0.003 for the motion and ap-
pearance branches, respectively. The optimization typically
takes ∼ 3− 5 minutes for a video with 128 frames.

4. WildCHI Dataset
Despite the prosperous development of 3D human datasets
in recent years, data for close human interaction remains
scarce due to complex body contacts, extreme inter-person



Dataset Motions Frames Scene 3D Pose Format Scheme Temporal RGB image
CHI3D [7] 373 63K indoor SMPLX MoCap ✓ ✓
Hi4D [65] 100 11K indoor SMPL mRGB ✓ ✓
ExPI [10] 115 30K indoor Skeleton mRGB ✓ ✓
InterHuman [33] 6,022 1.7M indoor SMPL mRGB ✓ ✗
Inter-X [62] 11,388 8.1M indoor SMPLX MoCap ✓ ✗
Flickr Fits [40] – 11K outdoor SMPLX Pseudo ✗ ✓

WildCHI 100 20K outdoor SMPL Pseudo ✓ ✓

Table 1. Comparisons of existing human-human interaction datasets.

occlusions, and severe visual ambiguities. Although some
recent works have introduced several large-scale human-
human interaction datasets [33, 62], they lack RGB im-
ages and cannot be used for the human interaction recon-
struction task. Furthermore, other datasets are captured
in controlled environments, leading to a domain gap from
in-the-wild images. The only outdoor dataset available is
Flickr Fits [40], which annotates images with close interac-
tions under a contact constraint. However, no in-the-wild
dataset exists to learn temporal dependencies for close hu-
man interactions, which are crucial for addressing occlu-
sions and depth ambiguities. To this end, we collect 100
videos with diverse environments and subjects from Tik-
Tok [54], and build pseudo ground-truth with the proposed
method. We also manually filter out incorrect estimations.
Tab. 1 demonstrates the strengths of our in-the-wild close
human interaction (WildCHI) dataset, which has a similar
amount of motion as commonly used indoor datasets (Hi4D
and ExPI). We also train CloseInt [16], a regression-based
close human interaction method, on the proposed dataset.
The experimental results in Tab. 2 show that WildCHI can
improve the performance of CloseInt [16] in both indoor
and outdoor scenarios. According to the terms of service of
TikTok [53], we will release our dataset for research pur-
poses. More animatable samples of the proposed dataset
can be found in the Supplementary Material.

5. Experiments

5.1. Datasets

Inter-X [62] and InterHuman [33] are large-scale human-
human interaction datasets. Inter-X covers 40 daily inter-
action categories with 89 distinct subjects having different
social relationships. InterHuman also contains diverse two-
person interactions. Due to the lack of color images, we use
these datasets to train the proxemixs prior only. Hi4D [65]
is an accurate multi-view dataset capturing closely inter-
acting humans. It contains 20 unique pairs of participants
with varying body shapes and clothing styles performing di-
verse interaction motion sequences. We follow [16] to use
5 pairs (23, 27, 28, 32, 37) as testset. The remaining se-
quences are used for training. CHI3D [7] captures 3 pairs
of people in close interaction scenarios with a Vicon MoCap

system and 4 additional RGB cameras. We use the stan-
dard splits of this dataset. 3DPW [57] also contains several
sequences with two-person interactions. We use these se-
quences for evaluation only.

5.2. Metrics
We report Mean Per Joint Position Error (MPJPE) and
MPJPE after Procrustes Analysis (PA-MPJPE) on close hu-
man interaction datasets. The joint PA-MPJPE [40] is also
used, which applies Procrustes Analysis on the pair. Ad-
ditionally, we utilize the Mean Per Vertex Position Error
(MPVPE) to measure mesh quality. Following [16], we use
an interaction error to assess the quality of reconstructed in-
teractive behaviors. Moreover, we incorporate the average
penetration depth (A-PD) [5] to evaluate body contact and
penetration depth.

5.3. Comparison to State-of-the-Art Methods
We compare the proposed dual-branch optimization frame-
work with some state-of-the-art baseline methods on dif-
ferent datasets to demonstrate our superiority. We first
evaluate Human4D [9] and CLIFF [31] on Hi4D [65] and
3DPW [57]. These two methods are designed for single-
person scenarios, which directly regress SMPL parameters
from a single image. As shown in Tab. 2, Human4D [9]
achieves high joint accuracy with a ViT backbone but strug-
gles to produce accurate spatial distributions due to the
using of weak-perspective camera. On the other hand,
CLIFF [31] estimates each human in original camera co-
ordinates but still encounters a high interaction loss due
to depth ambiguity. We also compare with BEV [52] and
GroupRec [15], which explicitly consider multi-person sce-
narios by introducing constraints for crowds. While these
methods predict humans with more reasonable distribu-
tions, they tend to ignore close interactions.

BUDDI [40] is a recent work designed specifically
for close interaction reconstruction using an optimization-
based framework. It fits two SMPL models to detected 2D
keypoints and can handle in-the-wild images. However, the
current state-of-the-art pose detectors [63] still struggle to
produce reliable keypoints for close interactive cases due
to visual ambiguity. Although it significantly improves the
pose accuracy, the model training relies on a lot of high-
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Figure 4. Qualitative comparison with BUDDI [40] and CloseInt [16]. Our method is more robust to visual ambiguity.

Method Hi4D 3DPW
MPJPE PA-MPJPE MPVPE Inter MPJPE PA-MPJPE MPVPE Inter

Human4D [9] 72.1 52.4 88.6 – 72.9 49.1 81.8 –
CLLIF [31] 91.3 53.6 109.6 141.5 – – – –
BEV [52] 91.8 52.2 101.2 131.0 78.3 48.5 82.3 136.4
GroupRec [15] 82.4 51.6 88.6 98.8 73.3 48.7 81.2 110.6
BUDDI [40] 96.8 70.6 116.0 102.6 83.6 53.6 93.8 113.1
CloseInt [16] 63.1 47.5 76.4 81.4 70.6 51.4 80.6 100.3
CloseInt [16] w/ WildCHI 61.4 45.1 75.4 80.5 66.4 48.3 77.4 95.9
Ours 59.1 44.3 72.0 80.2 64.5 45.6 75.2 96.4

Table 2. Comparisons on Hi4D and 3DPW. Our method can achieve state-of-the-art performance in both indoor and outdoor scenarios.
“–” means the results are not available.

quality interaction data. Since these data can only be ob-
tained in a controlled environment, the trained model shows
poor generalization ability in outdoor scenarios. Our ap-
proach differs from the above works as we simultaneously
reconstruct human motions and appearances, directly utiliz-
ing the RGB image as a constraint. This strategy alleviates
visual ambiguity by comparing rendered and original im-
ages. As depicted in Fig. 4, our method estimates interac-
tions with more accurate body poses, depth ordinal relation-
ships, and model-image alignment.

We also conduct experiments on outdoor images. On
3DPW dataset, we follow CloseInt [16] to use all interac-
tive sequences as a benchmark for the evaluation. Tab. 2
shows that our method can achieve state-of-the-art in terms

of most metrics, which demonstrates the superiority of our
method in in-the-wild scenarios. As shown in Fig. 4, our
method can work well under diverse environments. In ad-
dition, the close interaction data produced by our method
can also significantly improve the current regression-based
method (e.g., CloseInt). We also show some qualitative
images and videos in Supplementary Material, which also
demonstrate the effectiveness of our method.

5.4. Ablation Study

Human appearance. We investigate the importance of
the proposed appearance constraint by removing the ap-
pearance branch, and supervise the optimization by only
motion-level loss functions. As shown in Fig. 5, although
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Figure 5. Ablation study. The initial prediction is severely affected by visual ambiguity and cannot reconstruct accurate interaction. With
the proposed optimization, the body pose can be improved with the additional constraints. In addition, we find that appearance constraint
is important for the depth ordinal relationships.

the framework without the appearance constraint can still
produce accurate body poses, the depth ordinal relationship
is incorrect. We find that human appearance is effective to
prevent this problem, even with coarse texture. We simulta-
neously splat the two-person Gaussians onto the 2D image
during human appearance reconstruction to reflect occlu-
sion relationships in the results. By comparing the rendered
image with the original RGB input, we can reason the depth
ordinal relationship and enforce better interactions. Direct
use of RGB images as a constraint also promotes more ac-
curate body poses and model-image alignment since it does
not introduce noises compared to 2D keypoints and masks.
Additionally, physical constraints always limit the solution
space of the optimization [48]. When the physical con-
straint is not applied, the appearance and proxemics loss
promote the optimization to find more accurate 3D joints
without considering the mesh penetration.
Proxemics prior. The primary limitations of optimization-
based human reconstruction are the sensitivity to depth am-
biguity and local minima. To alleviate the impact of these
two obstacles, we propose a proxemics prior learned from
extensive interaction data to assist the optimization. We for-
mulate this prior as a diffusion model, allowing it to de-
noise noisy motions and generate clean data. During the
optimization, we finetune the pretrained network parame-
ters, and enforce the network to output accurate motions
under various supervisions. In Tab. 3, we compare our ap-
proach with a strategy that directly optimizes SMPL param-
eters without the proxemics prior. By leveraging learned
network parameters containing pose and interaction prior
knowledge, optimization with the prior proves to be more
accurate and efficient.

6. Limitation and Future Work

Limitation. Although the proposed framework can pro-
duce 3D close human interactions from a monocular in-
the-wild video, there are still some limitations. First, our
method cannot reconstruct high-quality complete human
textures when the light condition is changed or the human

Method MPJPE PA-MPJPE MPVPE Interaction A-PD
Initial Prediction 65.05 48.54 78.35 86.20 1.16
Ours w/o Appearance 60.68 45.86 73.52 81.01 0.83
Ours w/o Proxemics 61.52 47.13 74.84 87.13 0.85
Ours w/o Physics 57.01 42.67 69.57 78.50 1.30
Ours 59.06 44.29 71.99 80.18 0.81

Table 3. Ablations on Hi4D. ”Initial Prediction” denotes the re-
sults directly predicted by the pretrained proxemics prior without
the optimization. ”w/o Appearance”, ”w/o Proxemics” and ”w/o
Physics” represent the frameworks without appearance constraint,
proxemics prior, and physical constraint, respectively.

is partially observed. Although a coarse texture is sufficient
for constraining the underlying body motion, the quality of
reconstructed appearances can still be improved by incor-
porating light embedding [35] or large vision foundation
models [28]. Second, the current design can only capture
two-person close interactions. Without sufficient data, we
cannot train the proxemics prior for interactive behaviours
with more than 2 people. As a result, building an interaction
dataset for crowd is also a promising direction for future hu-
man behaviour understanding related tasks. In addition, the
input video should contain some frames with little or no
contact for constraining appearances.

7. Conclusion
We propose a novel dual-branch optimization framework to
reconstruct two-person close interactions from a monocular
in-the-wild video. To alleviate the depth ambiguity and in-
sufficient visual information, we first introduce a proxemics
prior based on diffusion model to assist the optimization.
We then build a appearance branch with 3D Gaussian splat-
ting to address the notorious visual ambiguity. Compared
to previous works that rely on keypoints, masks, and pure
RGB information, our method is more robust to diverse en-
vironments and can produce more accurate results. Based
on the propose framework, we further build an in-the-wild
close interaction dataset to promote related research.
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