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1. Datasets
Campus and Shelf [1] The Campus and Shelf datasets

contain more than 3 characters with partial occlusions and
across view ambiguities. We follow the same evaluation
protocol as in previous works [3] and compute the PCP (per-
centage of correctly estimated parts) scores to measure the
accuracy of 3D pose estimation.

Panoptic [6] This dataset is captured in a studio with 480
VGA cameras and 31 HD cameras, which contains multi-
ple people engaging in social activities. We conduct qual-
itative and quantitative experiments on 160906 pizza1 se-
quence with HD cameras.

MHHI [9] is a multi-person dataset that contains com-
plex and extreme poses as well as fast motion. The Fight se-
quence is publicly available and captured in a marker-based
manner. For a fair comparison, the quantitative experiments
are conducted on this sequence.

AMASS [10] is a large collection of 15 motion capture
datasets with a unified SMPL representation. The dataset is
used for motion prior training.

3DOH [14] is a 3D human occlusion dataset. We quali-
tatively evaluate our method on this dataset to reveal the su-
periority of our approach on motion capture from occluded
scenarios.

Human3.6M [5] is a large-scale, single human dataset
captured in a controlled scene, which consists of 11 subjects
with 4 views. It provides accurate 3D joint positions and
camera parameters. We follow [4, 7] to use S9 and S11 for
evaluation.

MPI-INF-3DHP [11] is captured using a multi-view
system. The standard testset contains 1 view under in-
door and outdoor scenes. We use the testset to evaluate our
method in the single-view setting.

2. Generative Model Evaluation
We conducted an experiment to demonstrate the gener-

ative ability of our motion prior. Randomly sample the la-
tent code for each frame will lead to an incoherent motion.
Thus, we sampled the latent code of the start and end frames
from the standard Gaussian distribution and generated the

Method Human3.6M MPI-INF-3DHP
PA-MPJPE MPJPE Accel PA-MPJPE MPJPE Accel

∗Li et al. [7] 43.8 64.8 – 65.1 97.6 –
∗Liang et al. [8] 45.1 79.9 – – 62.0 –
Huang et al. [4] 47.1 58.2 – – – –
VPoser-t 34.7 53.5 10.2 73.5 103.6 105.4
w/o local linear 32.5 44.2 7.1 64.7 99.1 43.7
Ours 30.3 43.3 4.6 62.4 90.2 32.3

Table 1: Comparison on single-person datasets. The
MPJPE and PA-MPJPE are in mm. The Accel is accel-
eration error in mm/s2. Our method gets more accurate
and temporal coherent results. ∗ denotes learning-based re-
gression.

code of the entire motion with linear interpolation. Fig.1
shows the comparison of the motion prior between with and
without local linear constraint. Without the constraint, the
interpolated latent code will produce preternatural interpen-
etration. On the contrary, with the local linear constraint,
we can generate temporal coherent and diverse motions by
linearly interpolating the sampled latent code.

3. More Results on Single-person Datasets

3.1. Results

[7] and [8] train a neural network to regress SMPL
parameters from multi-view images. Huang et al. [4]
proposed an optimization-based method to fit the human
model to multi-view 2D keypoints. We compared our
method with these baselines on single-person datasets. As
shown in Tab.1, we reported the mean per joint position er-
ror (MPJPE), the MPJPE after rigid alignment of the pre-
diction with ground truth using Procrustes Analysis (PA-
MPJPE) to evaluate the accuracy of estimated skeleton
joints. Furthermore, we used the acceleration error (Ac-
cel), which is calculated as the difference in acceleration be-
tween the ground-truth and predicted 3D joints, to describe
the quality of the predicted motion. The results in Tab.1
demonstrate that our method achieves state-of-the-art. Be-
sides, with the local linear constraint, the acceleration er-
ror decreases by 2.5 on Human3.6M dataset, proving that
it produces more coherent motions. We then conducted a
qualitative comparison between VPoser-t and our method
in Fig.2. The first row of Fig.2 shows a single view sam-
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Figure 1: Without the local linear constraint, the motion prior produces preternatural interpenetration on the meshes.

(a) RGB image (b) Overlay VPoser-t (d) Results VPoser-t(c) Overlay ours (e) Results ours
Figure 2: Row 1 shows a single-view case of a side view person, and row 2 is a multi-view case with the inaccurate detected
2D poses. Our method is more robust to the noises and ambiguities than VPoser-t.

ple on MPI-INF-3DHP dataset. Due to the ambiguity of
symmetrical skeleton joints on the side view, VPoser-t can
not use temporal information to penalize incoherent results.
However, our motion prior encodes the global dynamics and
local kinematics and can produce a natural mesh. In the
second row, the inaccurate 2D poses result in a jitter of 3D
mesh for VPoser-t. The results demonstrate that our method
is more robust to the noises.

4. Details

4.1. Data augmentation

Due to the limited human motion data, we use data aug-
mentation to enhance the generalization performance of the
model when training the motion prior. The strategy mainly
includes 1) Upsampling and downsampling. We upsample
or downsample the origin sequences to generate motions
in different frame rates. 2) Reverse sampling. We sample
the sequence from the end frame to the start frame to gen-
erate a new sequence. 3) Flip sampling. Since the human



body is symmetrical, we generate new motions by following
the kinematic tree of the human model to mirror the motion
across the left and right.

4.2. Camera Initialization

The initial extrinsic parameters of cameras are of great
importance to both denoising and joint optimization. To
ensure that the coarse values are in a reasonable range, a re-
projection error is used to judge the cameras. We first cal-
culate the 3D skeleton joints from different view 2D poses
with the initial camera parameters. We then project the 3D
joints to different views. If the intersection of union (IoU)
of the bounding-boxes of the projected 2D joints and de-
tected 2D poses is above 0.4, we consider the initial esti-
mated camera parameters are reliable. Otherwise, we esti-
mate other extrinsic parameters in the next frame. We use
the reliable results as the initial value for denoising and joint
optimization.

4.3. Physics-geometry Consistent Denoising

A semi-positive definite matrix M can ensure that the
correspondences between different views are correct, thus
reducing the influence of the noises. During the iteration,
the M is a real matrix whose element values are in the
range of 0 - 1. The alternating direction method of mul-
tipliers (ADMM) [2] is adopted to solve this problem. We
select the result with the most corresponding views from M
as the final output and use the selected result for joint op-
timization. The remaining results without correspondences
are the wrong detections.

4.4. Joint Optimization

Initialization. Although the motion prior is compact,
jointly optimizing large-scale multi-person motion se-
quences and camera parameters is still a highly non-convex
problem. To reduce the solution space, we use the ini-
tial camera parameters estimated in Sec.4.2 to initialize the
global positions and rotations of human models in each
frame. The coarse 3D skeleton joint positions are first trian-
gulated. Then we rigidly align the models to the estimated
3D joints. The rotations and translations of the aligned
models are used as initial values for the joint optimization.
Optimization. Our optimization is implemented in Py-
Torch [13] using L-BFGS [12] optimizer. On a desktop
with an Intel(R) Core(TM) i9-9900K CPU and a GPU of
NVIDIA GeForce RTX 2080Ti, 30s 5-view RGB videos
with 4 people take about 8.5 min to fit, in which the physics-
geometry consistent denoising takes about 8s and joint op-
timization spends 8.4min.

5. Limitations and Future Works
This work critically relies on the initial extrinsic camera

parameters. Although Sec.4.2 uses re-projection to filter out

unreliable results, it is still hard to be applied when the view
does not contain the target person. The learning-based cam-
era prediction may be used to estimate more robust initial
values for future works. It is also an interesting direction
to utilize human cues to estimate intrinsic parameters, and
provide a complete pipeline for calibration and distortion
correction. Furthermore, due to the coupling of human dy-
namics and camera motions, the proposed method can only
reconstruct human meshes with fixed cameras. In the future,
we will add a physical prior to the cameras and build inde-
pendent view-view and model-view correspondences to de-
couple camera motions and human dynamics, thus perform-
ing calibration and mesh recovery from large-scale scenar-
ios.

References
[1] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele,

N. Navab, and S. Ilic. 3d pictorial structures for multiple
human pose estimation. In CVPR, 2014. 1

[2] S. Boyd, N. Parikh, and E. Chu. Distributed optimization
and statistical learning via the alternating direction method
of multipliers. Now Publishers Inc, 2011. 3

[3] J. Dong, W. Jiang, Q. Huang, H. Bao, and X. Zhou. Fast and
robust multi-person 3d pose estimation from multiple views.
In CVPR, 2019. 1

[4] Y. Huang, F. Bogo, C. Lassner, A. Kanazawa, P. V. Gehler,
J. Romero, I. Akhter, and M. J. Black. Towards accurate
marker-less human shape and pose estimation over time. In
2017 international conference on 3D vision (3DV), pages
421–430. IEEE, 2017. 1

[5] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-
man3.6m: Large scale datasets and predictive methods for 3d
human sensing in natural environments. IEEE transactions
on pattern analysis and machine intelligence, 36(7):1325–
1339, 2013. 1

[6] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews,
T. Kanade, S. Nobuhara, and Y. Sheikh. Panoptic studio:
A massively multiview system for social motion capture. In
ICCV, 2015. 1

[7] Z. Li, M. Oskarsson, and A. Heyden. 3d human pose and
shape estimation through collaborative learning and multi-
view model-fitting. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
1888–1897, 2021. 1

[8] J. Liang and M. C. Lin. Shape-aware human pose and shape
reconstruction using multi-view images. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 2019. 1

[9] Y. Liu, C. Stoll, J. Gall, H.-P. Seidel, and C. Theobalt. Mark-
erless motion capture of interacting characters using multi-
view image segmentation. In CVPR, 2011. 1

[10] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and
M. J. Black. Amass: Archive of motion capture as surface
shapes. In ICCV, 2019. 1

[11] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko,
W. Xu, and C. Theobalt. Monocular 3d human pose esti-



mation in the wild using improved cnn supervision. In 3DV,
2017. 1

[12] J. Nocedal and S. Wright. Numerical optimization. Springer
Science & Business Media, 2006. 3

[13] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. 2017. 3

[14] T. Zhang, B. Huang, and Y. Wang. Object-occluded human
shape and pose estimation from a single color image. In
CVPR, 2020. 1


